Modelo predictivo de enfermedad cardiovascular basado en inteligencia artificial en la atención primaria de salud
Palabras clave:
enfermedad cardiovascular, factores de riesgo, modelo predictivo, inteligencia artificial, aprendizaje automático, minería de datos, atención primaria de salud.Resumen
Introducción: En Cuba y en el resto del mundo, las enfermedades cardiovasculares son reconocidas como un problema de salud pública mayúsculo y creciente, que provoca una alta mortalidad.
Objetivo: Diseñar un modelo predictivo para estimar el riesgo de enfermedad cardiovascular basado en técnicas de inteligencia artificial.
Métodos: La fuente de datos fue una cohorte prospectiva que incluyó 1633 pacientes, seguidos durante 10 años, fue utilizada la herramienta de minería de datos Weka, se emplearon técnicas de selección de atributos para obtener un subconjunto más reducido de variables significativas, para generar los modelos fueron aplicados: el algoritmo de reglas JRip y el meta algoritmo Attribute Selected Classifier, usando como clasificadores el J48 y el Multilayer Perceptron. Se compararon los modelos obtenidos y se aplicaron las métricas más usadas para clases desbalanceadas.
Resultados: El atributo más significativo fue el antecedente de hipertensión arterial, seguido por el colesterol de lipoproteínas de alta densidad y de baja densidad, la proteína c reactiva de alta sensibilidad y la tensión arterial sistólica, de estos atributos se derivaron todas las reglas de predicción, los algoritmos fueron efectivos para generar el modelo, el mejor desempeño fue con el Multilayer Perceptron, con una tasa de verdaderos positivos del 95,2 % y un área bajo la curva ROC de 0,987 en la validación cruzada.
Conclusiones: Fue diseñado un modelo predictivo mediante técnicas de inteligencia artificial, lo que constituye un valioso recurso orientado a la prevención de las enfermedades cardiovasculares en la atención primaria de salud.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).